1. <strong id="09cby"></strong>
    2. <b id="09cby"><menuitem id="09cby"></menuitem></b>
    3. <th id="09cby"></th>
        <del id="09cby"></del>
        <b id="09cby"></b>
          Hongxing Plastic Mould · More than 20 years of expertise in Mould manufacturing

          Favorites

          Contact Us

          Home

          中文版

          Product Search
          News Center
          News
          Contact Us

          Add: 21-2#, Xinggang Road, Huangshigang Industrial Zone, Huangshi City, Hubei Province

          Tel: 0086-13597667790

          Contact: Kate Yan

          E-mail: kate@www.fortlauderdaletowingservicenearme.com

          Website: www.www.fortlauderdaletowingservicenearme.com

           

          Details

          AUTOMATIC DESIGN OF EXTRUSION DIES AND CALIBRATORS




          Thermoplastic profiles have a large-scale application in the construction, medical, electric and
          electronic industries, among others. The term profile is commonly used to designate products of
          constant cross section that are obtained by the extrusion process.
          A typical extrusion line for the production of thermoplastic profiles generally comprises an
          extruder, a die, a calibration/cooling system, a haul-off unit and a saw, as shown in Figure 1.
          Figure 1 - Typical profile extrusion line (Battenfeld Extrusionstechnik GmbH).
          The major objective of any extrusion line is to produce the required profile at the highest rate and
          quality [1]. These goals are usually conflicting, i.e., the increase in speed generally affects the
          product quality negatively, and vice-versa. Therefore, the improvement of the extrusion line
          performance demands a systematic approach and a careful study of the phenomena involved in the
          Anais do 9 o  Congresso Brasileiro de Polímeros

          process [2]. The die and the calibration system are the extrusion line components that play a central
          role in the establishment of the product dimensions, morphology and properties and are also those
          that establish the maximum allowable production rate [3].
          The difficulties to be faced in the design of an extrusion die are closely related to the complexity of
          the profile to be produced. In fact, while the design of an extrusion die for the production of a rod is
          almost straight-forward, in the case of a complex window profile it can be an extremely complex
          process. From the geometrical point of view the extrusion die flow channel must transform a
          circular cross section, corresponding to the melt leaving the extruder, into a shape similar to that of
          the profile. Due to the large number of phenomena and restrictions involved and to the complexity
          of the polymer melt rheological behaviour, extrusion die design was, and still is, more an art than a
          science [4]. The design process is usually based on trial-and-error procedures, which are strongly
          dependent on the designer knowledge and experience [4], often requiring several trials. As a
          consequence, the design process is usually very time, material and equipment consuming, affecting
          product price and performance [5], since it does not guarantee the achievement of an optimum
          solution.

          The complex behaviour of the polymer melt during flow through the die, together with the expected
          slight variations of the operating conditions/polymer rheological properties, make it very difficult to
          produce the required melt extrudate cross-section with precise and stable dimensions. For this
          reason, the calibration/cooling system is used to establish the final most relevant dimensions of the
          profile while cooling it down until a temperature that guarantees its shape along the downstream
          stages [3]. Moreover, as the profile progresses along the line, it is subjected to a variety of external
          forces (such as friction, buoyancy and compression), being necessary to guarantee that it is strong
          enough to withstand these forces without deforming [3]. From a thermal point of view, the
          calibration/cooling system must also ensure fast rate uniform cooling of the extrudate in order to
          induce the adequate morphology and a reduced level of thermal residual stresses [6]. In practical
          terms, the temperature gradient along both the profile contour and its thickness must be minimized
          [7] and its average temperature at the calibration/cooling system outlet must fall bellow the
          solidification temperature, in order to avoid subsequent melting [8]. Furthermore, to ensure that the
          profile will be properly handled, before the saw point, all cross section temperatures must fall
          bellow the solidification temperature.

          Information

          免费久久99精品国产自在现线,久久久亚洲福利视频,有码无码人妻一区二区,欧洲乱码伦视频免费无码
          1. <strong id="09cby"></strong>
          2. <b id="09cby"><menuitem id="09cby"></menuitem></b>
          3. <th id="09cby"></th>
              <del id="09cby"></del>
              <b id="09cby"></b>